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A B S T R A C T

Health monitoring and diagnosis of photovoltaic (PV) systems is becoming crucial to maximise the power
production, increase the reliability and life service of PV power plants. Operating under faulty conditions, in
particular under shading, PV plants have remarkable shape of current-voltage (I-V) characteristics in comparison
to reference condition (healthy operation). Based on real electrical measurements (I-V), the present work aims to
provide a very simple, robust and low cost Fault Detection and Classification (FDC) method for PV shading
faults. At first, we extract the features for different experimental tests under healthy and shading conditions to
build the database. The features are then analysed using Principal Component Analysis (PCA). The accuracy of
the data classification into the PCA space is evaluated using the confusion matrix as a metric of class separability.
The results using experimental data of a 250 Wp PV module are very promising with a successful classification
rate higher than 97% with four different configurations. The method is also cost effective as it uses only electrical
measurements that are already available. No additional sensors are required.

1. Introduction

In recent years, photovoltaic (PV) systems have received consider-
able attention thanks to the development of PV technologies and the
growing demand for renewable energy in a wide range of applications
(satellites, telecommunication, electric vehicles, homes, agriculture…).

Solar PV energy has become the third most important renewable
energy after hydro and wind energy with a global installed capacity of
402 GWp by the end of 2017 (REN21, 2018).

The efficiency of PV systems is limited to 15–20% (Maghami et al.,
2016). In addition, PV modules present an average performance de-
gradation rate of 0.923% per year according to the study of Tabatabaei
et al. (2017), which has been evaluated for mono-crystalline silicon
(mc-Si) PV systems. More recently, for the same PV technology,
Quansah and Adaramola (2018) reported an annual degradation rate of
maximum produced power of 1.54%.

PV systems are subject to various types of faults. These faults can be
related to many factors such as material interactions (corrosion of
connectors, yellowing, browning of encapsulation material and

discoloration of busbars…) and environment factors such as soiling and
shading. Soiling refers to the accumulation of snow, dirt, dust, leaves,
pollen, and bird droppings on PV panels (Maghami et al., 2016).
Shading may be a result of soiling or occurs due to obstructions caused
by trees, buildings or chimneys. Thus, PV cells or modules may be
partially or completely shaded during their operation. Shading is one of
the most recurrent and damageable faults. In fact, this condition in-
duces important degradation of PV system performances. Partial
shading can lead to more than 10–20% of annual reduction in power
production in residential applications as shown by Deline et al. (2011).
Moreover, the presence of localized shading on PV modules leads to an
overheating of the shaded cells despite the presence of bypass diodes.
Using the infrared thermography (IRT) many studies prove the presence
of hot spot zones on the shaded PV cells (El Basri et al., 2015; Tsanakas
et al., 2016). Thus, the temperature increase in these zones leads to a
thermal power dissipation (Bressan et al., 2016), reduces considerably
the PV module lifetime and can damage the shaded cells (Brooks et al.,
2015). The detection of such undesirable operating conditions has be-
come mandatory for obvious safety and economic reasons.
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(a) Existing PV diagnosis approaches in literature

Several PV diagnosis and monitoring studies have been developed.
However, the used techniques often require a relatively high cost in
equipment or complexity in the diagnosis process development. In
general, they are three main approaches used for PV fault diagnosis:
image-based, model-based and process history-based also known as
data-driven.

The common image-based PV diagnosis methods are the
ElectroLuminescence (EL) and the IRT imaging under steady state
conditions. These methods are becoming increasingly popular, since
they offer efficient solution not only for detecting the fault occurrence
within a PV plant, but also for isolating accurately the fault. Such op-
tical inspection techniques need appropriate and expensive equipment
(thermal camera, silicon charged coupled device (CCD) camera…). EL-
based diagnosis method is rather efficient to indicating the existence
and the location of contact failures; cell cracks and shunts, inactive PV
cells or sub-strings (due to disconnection or shunted bypass diodes) and
potential induced degradation (PID) with high accuracy (IEA, 2014).
Nevertheless, this technique requires particular test conditions. A
camera with high resolution and a high pass filter are required. In ad-
dition, electroluminescent inspections must not be done under max-
imum power point (MPP) conditions; they are performed either in dark
environment or after interrupting the PV system’s operation. To per-
form the EL technique, the PV module must be supplied by a DC-current
to stimulate radiative recombination in the PV cells (IEA, 2014). Thus,
in the case of large PV installations, the experimental setup may be-
come complex, costly and time-consuming. From this point of view, this
technique appears more practical for small PV plants. IRT measure-
ments are conducted outdoors and at MPP operation. The majority of
faults detected by this method, which are similar to those detected by
EL-imaging, have a significant effect on the defective PV module’s
thermal behaviour; their signature appears as marked and in-
homogeneous points in the temperature distribution on the surface of
the PV module. IRT-based method is fast, real time and effective to
detect and exactly locate the faults thanks to the thermal signature, and
without disturbing or interrupting the PV system operation. However,
IRT method needs also specific conditions to be performed (sunny
cloudless day, high irradiation, low ambient temperature and wind
speed, accurate angle of view…) for correct and accurate temperature
measurement (IEA, 2014).

Model-based approaches generally use an analytical model of the PV
system to estimate the parameters, which will be compared to the
measured ones obtained from real data. The generated residuals are
used as fault features for diagnosis purposes. Recently, some model-
based techniques rely on the PV power losses analysis. These modelling
methods need knowledge of both irradiance and PV generator tem-
perature to predict the output power of the PV system (Chouder and
Silvestre, 2010; Kang et al., 2010). More recently, model-based tech-
niques use the empirical parameters (fill factor (ff), short-circuit current
(Isc), open-circuit voltage (Voc)…) that are calculated from the shape of
the current-voltage (I-V) curves (Garoudja et al., 2017; Ali et al., 2016;
Spataru et al., 2015). The main advantage of these methods is that they
have low hardware requirements and are applicable to a wide range of
PV systems. If the designed model can capture the main physics of the
system, these methods are efficient for shading detection.

Data-driven approach is based on data history, collected during
operation. Fault features are extracted and analysed for fault diagnosis.
Different techniques can be used ranging from signal processing to
computational intelligence and machine learning. They do not require
any explicit model of the process under monitoring. Among signal
processing techniques, time-domain reflectometry (TDR) (Takashima
et al., 2008) is used to detect and identify open-circuit faults and spread
spectrum time-domain reflectometry (SSTDR) techniques are used to
detect catastrophic faults, ground-faults and PV arc faults (Alam et al.,
2013, 2014). These techniques are costly and require a specific external

signal function generator. Moreover, they are not used to detect and
identify shading faults. Other techniques extract the fault features from
the I-V characteristic of PV module, string or array. Based on the ana-
lysis of the first and the second derivatives of I-V curves, Bressan et al.
(2016) detect the activation of bypass diodes that indicate the presence
of shading fault. This fault is also detected by comparing the I-V curves
in normal and shaded operations as studied by El Basri et al. (2015).
These methods are simple and effective to detect shading faults, but
they are not able to identify and classify the type of shading patterns.

Artificial neural network (ANN) and fuzzy classifier are the most
used methods for shading fault detection as described in (Dhimish et al.,
2017; Spataru et al., 2015). However, these methods suffer from several
disadvantages like requiring a large amount of training data for accu-
racy detection, time-consuming training step and sensitivity to un-
balanced weather conditions. In addition, this data is obtained for a
specific PV installation. Thus, the rules are strongly tied to the system
under study. Another disadvantage of these techniques is that the
trained data need to be updated periodically. This is due to the high
variability of operating conditions such as the environment variation or
solar cells degradation and aging. This means that a trained data in low
irradiance and low temperature condition for example, may misclassify
the data and generate false alarms for healthy operating conditions if
the irradiance and the temperature are higher.

However, taking advantage of the PV systems during operation, a
huge quantity of data can be collected for analysis. Therefore, data-
driven modelling is relevant, and features can be extracted then ana-
lysed for fault diagnosis purposes. In the field of features extraction
techniques, Principal Component Analysis (PCA) is one of the most
common multivariate statistical tools used for data representation and
classification (Jollife, 2002).

PCA has been proved in several studies to be effective and powerful
for the diagnosis in different applications and shows good classification
performances as in many studies (Harkat et al., 2006; Harmouche et al.,
2012; Gharavian et al., 2013; Harmouche et al., 2014, 2015; Adouni
et al., 2015). This technique is very attractive for applications involving
complex systems. To the best of our knowledge, it has not yet been used
for PV systems diagnosis in such operating conditions.

(b) Paper contribution

We propose in this study to investigate the effectiveness of shading
fault diagnosis using PCA for the analysis of the features extracted from
real I-V curves. The proposed method is applied offline, for the case of a
PV module. Based on the obtained results, the PCA’s performances for
fault detection and classification are discussed.

Here are the research contributions:

- For the first time, an implicit PCA model is developed for PV system
fault detection and classification (FDC). This model has several
advantages over the reported models in literature, such as simplicity
and low training cost. Moreover, this model leads to good and clear
data visualization.

- Compatibility with the existing PV systems. The FDC method can
operate with any connected PV system, thanks to the integration of
online I-V tracers for the new existing PV inverter technologies. It
takes the advantage of available measurements in such existing
systems with no additional hardware.

- In addition to its ability to discriminate the healthy data from the
faulty ones, the proposed approach shows a good classification
capability for the same category of fault (shading). In fact, the dif-
ferent shaded configurations are well classified using the PCA al-
gorithm.

(c) Paper outline

The paper is organised as follows; in Section 2, preliminary simu-
lation results are presented to verify the ability of using I-V curve and
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data processing with PCA to separate different faulty conditions. In
Section 3, a brief description of the experimental setup is done and the
experimental tests in healthy and faulty operations are presented. In
Section 4, the fault detection methodology is described and im-
plemented. The data processing and the evaluation’s results are also
detailed both in the training and the validation steps. Section 5 con-
cludes the paper.

2. Preliminary studies: Analysis of the I-V curves for different
faults

For PV systems, the degradation (or the faulty) modes are reflected
differently in the I-V curve, which has a particular shape under shaded
condition due to the activation of bypass diodes. In the following, we
consider a PV module with the same specifications as the one con-
sidered in this paper and a series resistance of 0.3Ω at Standard Test
Conditions (STC). To show the effects of some of the PV faults on the I-V
curve, we present in Fig. 1 the simulation results obtained under
healthy conditions, partial shading and degradation of the series re-
sistance. Under shading fault, we consider that the three sub-strings
receive non-uniform irradiations. We can observe from Fig. 1 that a
degradation of the series resistance mainly modifies the I-V curve in the
region close to the open circuit voltage Voc (Rodríguez et al. 2015). The
same effect can be observed in the case of potential-induced degrada-
tion (PID) (Spataru et al. 2015).

From Fig. 2 we can deduce that the projection of the data in the new

reference frame spanned by (PC1, PC2) that the partial shading fault
could be clearly separated from the degraded series resistance. How-
ever to separate the healthy case from the degraded series resistance,
additional data processing or/and additional information should be
done or included.

In the following, we will focus on the shading fault detection with
experimental data. Also more details will be provided on the features
selected for PCA evaluation.

3. PV system and shading condition

The common models used to reproduce the I-V characteristic of a PV
cell are based on the one diode or two diodes equivalent electrical
circuit (Askarzadeh and Rezazadeh, 2012). Other models have been
developed to offer a better modelling of the physical phenomena in a
PV cell (Tossa et al., 2014; Bishop, 1988). The classical single diode
model is generally used since it is adequate at reproducing the main
characteristics of a PV cell. Shading the total or the partial PV system
surface is a very serious concern in such systems (Quaschning and
Hanitsch, 1996; Patel and Agarwal, 2008). In order to mitigate the
shading effects, PV systems are equipped with bypass diodes. These
diodes become operational when the PV cells are reverse biased under
shading condition. The activation of these diodes creates a short circuit
of the shaded cells, which limits their reverse voltage and thus the
dissipated power. In practice, a single bypass diode is usually connected
across a group of 18–20 cells.

3.1. Experimental set-up description

The evaluation of the proposed fault detection technique is carried
out using real data generated from the FL60-250MBP PV module. The
main parameters are given in Table 1 under Standard Test Condition
(STC) (1000W/m2, 25 °C). It is composed of 60 mc-Si based PV cells,
connected in series and gathered into three sub-strings of 20 PV cells for
each one. This module is equipped with three bypass diodes; each one is
mounted in anti-parallel to protect a PV sub-string.

In this experiment, the I-V curves are obtained online using a
variable load (Programmable DC electronic load Chroma 63600), which
provides 101 data from open-circuit voltage to short-circuit current for
each I-V curve. Online measuring methods of the I-V characteristic can
be also done using other real devices. In fact, their main principle is to
apply a variable impedance, which changes from a very large (or small)
value to a small (or large) one in order to extract voltages and currents
values between open circuit voltage and short circuit current. Many
examples of these methods can be found in the literature. Varying the
impedance can be created by using resistive load (Van Dyk et al, 2005),
charging or discharging a capacitor (Benzagmont et al., 2018;
Mahmoud 2006; Muñoz and Lorenzo, 2006; Spertino et al., 2015) or
using an electronic switch like MOS transistor (Kuai and Yuvarajan,
2006). The use of one device depends on the PV power and the desired
accuracy of measurements. For example, the use of the capacitive load
is recommended for measuring in PV installations from 2 up to 50 kWp
(IEC, 1995). Considering 101 samples in this experiment is enough to
sweep the I-V curve of the module under study. A reference cell (RG100

Fig. 1. PV faults’ signatures on the I-V curve.

Fig. 2. PCA results in the subspace spanned by PC1 and PC2 for the simulated
PV faults.

Table 1
PV module specifications at STC.

Symbol Quantity Value

Pmpp Maximum Power (Wp) 250
Impp Current at pmpp(A) 8.21

Vmpp Voltage at pmpp(V) 30.52

Isc Short-circuit Current (A) 8.64
Voc Open-circuit voltage (V) 37.67
s Area of the module (m2) 1.64

S. Fadhel et al. Solar Energy 179 (2019) 1–10

3



by SOLEMS) is used to measure the solar irradiance captured by the PV
module area and a 4-wire Pt100 probe, bonded on the back face of the
PV module, is used to measure the temperature.

A data acquisition system is installed and a computer is used for
supervision and data visualization using LABVIEW®. This experimental
setup is installed at the French national observatory SIRTA (Haeffelin
et al., 2005). A picture and a diagram describing the instrumentation
are displayed in Fig. 3.

3.2. Data acquisition

Five sets of experimental tests have been conducted to assess the
fault detection approach. They have been realised under several oper-
ating conditions:

• One healthy mode

• Four faulty modes with different shading conditions: for each set,
the shading is applied by covering the PV cells with a survival
blanket.

The experimental data is redundant. We have recorded three mea-
surements (Am, Bm and Cm) of a complete I-V characteristic for each set
of healthy and faulty tests. The collected data sets Am and Bm will be
used for the training step while Cm will be used for validation as ex-
plained in Section 4. Each I-V curve is composed of 101 samples. It is
recorded in one minute. 101 samples are enough for our system to
sweep a complete I-V characteristic. Generally, the number of samples
needed to extract these characteristics is selected according to the size
of the PV system and to the mismatching conditions in order to clearly
show the deviations and the inflection points on the I-V curve. Despite
the short duration between measurements, the irradiation can change
significantly. For each I-V curve (Fig. 4 and Fig. 5), the three cases Am,
Bm and Cm are drawn in blue, red and mustard lines respectively.

3.2.1. Healthy condition
Fig. 4 illustrates the experimental I-V curve measured three times

when the PV module operates in healthy condition and clear condition
(more than 800W/m2). As the PV module short-circuit current is pro-
portional to the solar irradiation, it produces less current when re-
ceiving low irradiation level. We notice that these results are consistent

with the datasheet information given under STC (Table 1).

3.2.2. Shading conditions
The four configurations of shading, the active diodes and the I-V

characteristics (measured three times for each configuration) are illu-
strated in Fig. 5. In shaded conditions, all the I-V curves show multiple
peaks explained by the state of the bypass diodes relative to each type
of the applied shading. These peaks prove the efficiency degradation of
the PV system under shading since its maximum produced power is
reduced. As it is partially shaded, the PV cells of the module under test
are under non-uniform irradiation. We note that for each I-V char-
acteristic, the solar irradiation displayed in the legend is the one
measured with the reference cell (RG100). The behaviour of the ex-
perimental curves differs according to the shading configuration (row
level, column level and number of shaded cells) and to the environ-
mental variations (temperature and solar irradiation). Fig. 5a shows the
first shading configuration; one PV sub-string is partially shaded. The
shading of 12 cells leads to the activation of one bypass diode so the
deactivation of the faulty sub-string. This is confirmed with the voltage
steep variation due to the lost of this sub-string. (Fig. 5e). For the rest of
the configurations, two bypass diodes are activated, as two sub-strings
are partially shaded for each configuration. According to the severity of
the shading fault, we have two cases: the diodes are conducting

PV module under test

Reference
cell RG100 

4-wire Pt 100 
probe, class 

FL 60-250
MBP PV

Variable load 

Programmable DC 
Electronic Load 
Chroma 63600

+

-

Solar irradiation 
PV module temperature Data 

acquisition NI

Data transfer

Data visualization 
and analysis 

HMI

Fig. 3. Layout of the experimental setup.

Fig. 4. Experimental I-V curve under healthy (normal) condition.
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(a) (e)

(d) (h)

(b)

(c)

(f)

(g)

Fig. 5. Shading configurations (a) 1, (b) 2, (c) 3, (d) 4, and experimental I-V curves (e), (f), (g), (h).
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simultaneously (Fig. 5c) and there is one voltage peak (Fig. 5g), or they
are activated one after the other (Fig. 5b and d) and we observe two
peaks in the voltage.

3.3. Data reproducibility

For our evaluation, the I-V curve is acquired three times for each
experimental test. The main idea behind the data redundancy is to
create a database for the diagnosis algorithm. This database will be
divided into training data and test data. The experimental tests show
that the shading faults strongly modify the shape of the I-V character-
istics. Therefore, we investigate in this paper the use of area under the
curve (AUC) as a metric to analyse the differences between the re-
dundant data of each experimental test. It is computed based on the PV
current and PV voltage. We consider the normalized current with re-
spect to the measured irradiation. An approximation of the AUC is
expressed as following:

∑= − − + −− − − −AUC v v i i i v v1
2

[( )( )] ( )
i

j j norm j norm j norm j j j1 , , 1 , 1 1
(1)

=i i G
Gnorm

STC

mes (2)

where GSTC and Gmes are respectively the irradiations for STC and the
measured one.

The standard and relative errors of the AUC computed for each test
are given in Table 2. We can first notice that the highest AUC values are
obtained under healthy condition. This is consistent with the I-V curves.
This area mainly varies with reference to the test condition (healthy or
faulty) and to the shading fault type.

The replication of the measurements shows very little deviations
between the I-V data obtained for each test, which is consistent with the
one-minute measurement process. In fact, the solar irradiation changes
little for a maximum rate of 13W/m2 in healthy case and 25W/m2 for
the first faulty configuration, 50W/m2 for the second, 53W/m2 for the
third and 15W/m2 for the last one. The maximum relative error ac-
counted for the healthy operation is 4.69% and 2.36% for the faulty
one. According to this variability, we assume that the database is re-
presentative of all operating conditions and can be used for evaluating
the fault detection.

4. Shading fault detection

The flowchart of the method is displayed in Fig. 6. The first step
consists in the modelling. The training data represents 67% of the ex-
perimental measurements determined for the healthy and all cases of
PV shading faults. The second step consists in the data pre-processing.
The PV power and efficiency are used as additional information to build
the matrixX . Then, the logarithm function is applied to each variable of

this database. Finally, the features are extracted and analysed.
When dealing with I-V curves in real environmental conditions, it

might be difficult to distinguish healthy operations from faulty ones.
Therefore, to ensure reliable fault detection one should find an appro-
priate workspace in which the data’s separability is highlighted. Indeed,
PCA is known to be an efficient multivariate statistical tool for this
purpose.

The PCA is applied to the matrix X to get the principal scores that
form the PCA space for data representation and classification.

4.1. Principal component analysis formulation

Principal Component Analysis (PCA) is a multivariate statistical
technique that seeks in the multidimensional space of system variables
the most dominating dimensions to re-express the multivariate database
built from a large number of measurements recorded at different times.
The new dimensions are uncorrelated so the reduced subspace acts like
a denoising filter and keeps the underlying “latent structures” in the
data. This new subspace is denoted the principal subspace or the ‘re-
presentation’ subspace. Its complementary subspace into which noises
and outliers are rejected is termed the residual subspace. Analytically,
PCA searches orthogonal directions, which contain the maximum var-
iance of the projections for the data set points. The PCA task is for-
mulated by a problem of the eigenvector decomposition of the data
covariance matrix (Jollife, 2002).

The data consists of measurements collected at N different sampling
times of M variables. The time points represent the observations. PCA
uses a linear combination of the original variables to build the new
variables while keeping maximum variance information. The first
principal components, which span the principal subspace, are given by
the first l dominant eigenvectors of the data covariance matrix. They
are associated to the l highest eigenvalues. The last non-retained ei-
genvectors (M – l) define the residual subspace. In the representation
subspace containing the most significant variations, the eigenvectors
are denoted loading vectors and the projection of the data on these
loading vectors are called principal component scores. These searched
directions are called principal components (PCs), each one being
characterised by a loading vector and a score component. The percen-
tage of the variance of data contained in each PC is expressed by its
corresponding eigenvalue. Each PC is aligned in a direction corre-
sponding to the largest variance of the data, starting with the first PC.
Principal components are therefore ordered from the most energised
associated to the highest eigenvalue, to the less energised associated to
the lowest eigenvalue. Based on stop criteria the principal subspace is
spanned with most energised PCs while the residual one is spanned
with the remaining PCs. For this purpose, many stopping criteria have

Table 2
Evaluation of area under the curve, the standard and the relative errors for the
experimental tests.

Healthy
condition

Shading configurations

1 2 3 4

Area under the
curve

Am 299.62 153.34 83.06 71.64 157.15
Bm 296.49 154.26 82.34 72.08 160.87
Cm 285.56 155.04 82.16 72.10 159.84

Standard error ΔAmBm 3.13 0.92 0.72 0.44 3.72
ΔAmCm 14.06 1.70 0.90 0.46 1.03
ΔBmCm 10.93 0.78 0.18 0.02 2.69

Relative error
(%)

ΔAmBm/A 1.04 0.60 0.86 0.61 2.36
ΔAmCm/A 4.69 1.10 1.08 0.64 0.65
ΔBmCm/B 3.82 0.50 0.21 0.02 1.67

Modelling : Data-driven I-V curves acquisition

Data pre-processing

Features extraction

Features analysis

I,V,P,

PCA for data 
representation

PCA for data 
classification

Fault Detection and 
Classification

Fault Detection and 
Classification

Fig. 6. Flowchart of the FDC algorithm.
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been proposed in the literature such as the cumulative percentage of
total variance (CPV) (Chiang et al., 2001) and minimizing the Variance
of Reconstitution Error (VRE) (Qin and Dunia, 2000). A comparison
between 11 methods to determine the number of most energised PCs
has been given by Valle et al. (1999). From the data collected in the
healthy operating mode of the process, PCA is applied and the loading
vectors are used as references to design the model. The scores or their
statistical distributions can be also used to design the implicit model.
When new data is collected, it is projected in the subspace (principal
or/and residual). The deviation from the reference is then measured
and analysed to assess the fault occurrence.

Let us consider N observations of M process variables gathered into
the original data matrix ×X N M[ ] given by:

=×X x x x[ , ..., , ..., ]N M k M[ ] 1 (3)

where =xj j N( 1,. ) is the jth variable.
At first, it consists in centring (zero mean) and reducing (unit var-

iance) the variables for each observation k of =xj j N( 1,. ):

=
−x k x k x

σ
( ) ( ) ( ) ( ¯ )

( )i c
i i

i (4)

where x( )j c is the centred and reduced variable, x( ¯ )j and σ( )j are re-
spectively the mean value and the standard deviation of.

We can therefore define the new data matrix as:

=×X x x x( ) [( ) , ...,( ) , ...,( ) ]c N M c k c M c[ ] 1 (5)

The covariance matrix is then calculated as:

=
−

C
N

X X1
1 c

T
c (6)

The quality of the representation for the collected measurements for
fault diagnosis purposes relies on the accuracy of the PCA model. This
model depends on the retained PCs to represent the data variability. Let
us denote P the column matrix of loading vectors, which are arranged in
the descendent order of their corresponding eigenvalues. The principal
component scores are obtained by the projection of the original data
centred and reduced on the new space spanned with P. The matrix

×TN M[ ] of the principal component scores is defined by:

= =× ×T X t t t[( ) [ , ..., , ..., ]]N M c N M k M[ ] [ ] 1 (7)

4.2. Data pre-processing and features extraction

The selection of the variables is very important to obtain the best
representation and discrimination of the data. In order to detect the
shading fault, Fadhel et al. (2018) have used the voltage, the current
and the power of the PV module as variables. Thanks to PCA, they have
successfully distinguished the healthy data from the faulty one. How-
ever, using these variables in our case has led to a severe overlapping in
the space spanned with the principal scores. This is due to the variation
of the irradiance between two measurements for the same operating
condition and also to the common levels of voltage between the PV
curves obtained under shading faults (Fig. 5). In order to have a fault
diagnosis, robust to environmental changes and sensitive to fault oc-
currence, we have:

• normalised the PV voltage and power with respect to the PV effi-
ciency,

• used the log function.

The selection of these features allows us to use experimental mea-
surements obtained in non-controlled irradiance operating conditions
without a huge influence of this environmental parameter.

The principal component analysis is finally applied to the training
data matrix =× log η ηX [v/ i P/ ][1010 3] composed of 1010 observations of
3 variables (Fig. 7) where P and η are respectively the power and the

efficiency. It consists of 5 sub-matrices of 101*2 training observations.
The efficiency is computed for each couple of observation i v( , ) and is
expressed as follows:

=η P
G S

100
mes (8)

where S is the area of the PV module under test.
The data set generated for both healthy and shading conditions

during the experimental tests is composed of 1515 samples. The
training step is performed with 1010 samples using the first two mea-
surements Am and Bm of each test. The main task of this step consists in
the construction of the PCA model from the learning data set. This
implicit model will be used for validation of the test data set.

4.3. Features analysis in the training step

Table 3 presents the eigenvalues and their relative contributions.
The first two PCs retain 99.99% of the information. Projecting the
training data into the PCA subspace spanned with PC1 and PC2, PC2
and PC3, PC1 and PC3 gives the data scatter displayed in Fig. 8a, Fig. 8b
and Fig. 8c respectively. The inclusion of the three principal compo-
nents in the PCA space used to project the data gives the 3D re-
presentation of Fig. 8d. The representation in the subspace spanned
with the first two PCs is able to detect and identify the fault. We can
observe four classes: one healthy named class C0 and 3 faulty obtained
from 4 faulty configurations as given in Table 4. Indeed, shading con-
figurations 2 and 3 correspond to the simultaneous activation of two
bypass diodes. The healthy class is well separated from the faulty
classes. Those ones are distinguished with reference to the fault size and
location.

4.4. Classification performance in the training step

The results are analysed through the confusion matrix displayed in
Table 5. The columns of this table show the percentage of affectation of
the observations of a class a priori in a class a posteriori. The error rates
of class separability are checked by the one-leave-out cross validation
method. We first compute the coordinates of the gravity centre (con-
sidered as the mean value in our case) of each class a priori in the PCA
space. Then, the Euclidean distance between these centres and each

Fig. 7. Data set design for PCA analysis.

Table 3
Eigenvalues and Percentage of the Principal Component contributions.

Principal components

PC1 PC2 PC3

Eigenvalue 1.99 1.006 3.09 E−32
Variance (%) 66.45 33.54 1.03 E−30
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observation in the training database are evaluated. Finally, an ob-
servation is assigned to a class among the four obtained classes if it is
the closest to its centre of gravity. This table shows that a few errors are
found by classifying the measurements of the training data set. We
found that 97.03% of the measurements in healthy condition have been
classified in their a priori class C0 and only 2.97% misclassification is

found and affected to the faulty class C2 (corresponding to three mis-
classified healthy measurements). We have also found that 100% of the
faulty data of shading configuration 4, represented by faulty class C3,
are perfectly classified. Based on these good discrimination results, we
can use the implicit model obtained from the training data and PCA for
the analysis of the new observations.

4.5. Fault identification performance in the validation step

In order to evaluate the effectiveness of the PCA model for PV
system Fault Detection and Classification, we have used a new data set
composed of 505 observations, representing 33% of the experimental
database. The test data set corresponds to the measurements Cm that
were not included in the training data. These measurements are
grouped in the test database according to the three selected re-
presentative variables, v η/ , i and P η/ . Then they are projected into the
PCA space spanned by the eigenvectors determined during the training
step using (7). This projection gives the data classification shown in
Fig. 9. We can conclude that all the test observations are well identified
and classified in the relevant group. The data dispersion obtained for
the new data in the PCA space is similar to the one obtained with the
training data. The faulty classes are well separated and discriminated
from the healthy one.

With the PCA, we are able to identify successfully the test data in
their corresponding groups. This performance is evaluated through the
confusion matrix given in Table 6. We have succeeded to separate the
four a priori defined classes with a minimum rate of 97.03%. Only 4/

(a) (b)

(c) (d)

Fig. 8. PCA training data set results in the subspace spanned by PC1 and PC2 (a), PC2 and PC3 (b), PC1 and PC3 (c), and 3D PCA plot.

Table 4
Classes in the PCA space.

Test Condition Class

Healthy C0

Shading configuration 1 C1

Shading configurations 2 and 3 C2

Shading configuration 4 C3

Table 5
Confusion Matrix for training data set classification.

Class a priori Data Assignement a posteriori

Healthy Class
C0 (%)

Faulty Class
C1 (%)

Faulty Class
C2 (%)

Faulty Class
C3 (%)

Healthy Class
C0

97.03 0 2.97 0

Faulty Class C1 0 98.52 1.48 0
Faulty Class C2 12.62 0 87.38 0
Faulty Class C3 0 0 0 100
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505 test samples are misclassified in two a posteriori groups; 3/101 for
healthy class C0 and 1/101 for faulty class C1 representing a classifi-
cation error of 2.97% and 0.99% respectively. This confirms that the
developed PCA model is very efficient to detect and identify the fault.

5. Conclusion

In this study, a data-driven FDC approach is proposed for a PV
module shading fault diagnosis. This method uses the I-V curve of the
PV module generated under healthy and faulty conditions. An experi-
mental setup has allowed the collection of data for five different op-
erating conditions to build the database. In the pre-processing step the
power P has been added to the original variables v η/ andi. Then a
normalisation with the efficiency has been done to mitigate the varia-
tion of the irradiance and the logarithmic function has been introduced
to make the method more sensitive to fault occurrence. Principal

component analysis has been applied to the training database (66% of
the data history). The obtained model has been used for fault detection
and classification. In the training step, we have rather good perfor-
mances with a minimum classification success rate of 87.38% for the 4
classes (one healthy and three faulty). During the validation step (with
the remaining 33% of data history), we have obtained successful clas-
sification rate with a minimum of 97%.

This method does not depend on any particular PV size and only
uses available measurements (PV current and voltage) avoiding extra
hardware and costs. Furthermore, it is insensitive to the weather con-
ditions changes (sudden variations of solar irradiation and temperature
of the PV module). Based on the analysis of real PV data, the study
demonstrates the feasibility and effectiveness of the PCA for the diag-
nosis of PV shading faults.
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